Remove Data Drift Remove ETL Remove ML
article thumbnail

How to Build ETL Data Pipeline in ML

The MLOps Blog

From data processing to quick insights, robust pipelines are a must for any ML system. Often the Data Team, comprising Data and ML Engineers , needs to build this infrastructure, and this experience can be painful. However, efficient use of ETL pipelines in ML can help make their life much easier.

ETL 59
article thumbnail

How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue

AWS Machine Learning Blog

Statistical methods and machine learning (ML) methods are actively developed and adopted to maximize the LTV. In this post, we share how Kakao Games and the Amazon Machine Learning Solutions Lab teamed up to build a scalable and reliable LTV prediction solution by using AWS data and ML services such as AWS Glue and Amazon SageMaker.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning Blog

This post was written in collaboration with Bhajandeep Singh and Ajay Vishwakarma from Wipro’s AWS AI/ML Practice. Many organizations have been using a combination of on-premises and open source data science solutions to create and manage machine learning (ML) models.

article thumbnail

Schedule Amazon SageMaker notebook jobs and manage multi-step notebook workflows using APIs

AWS Machine Learning Blog

Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. Amazon SageMaker notebook jobs allow data scientists to run their notebooks on demand or on a schedule with a few clicks in SageMaker Studio.

article thumbnail

Building ML Platform in Retail and eCommerce

The MLOps Blog

And eCommerce companies have a ton of use cases where ML can help. The problem is, with more ML models and systems in production, you need to set up more infrastructure to reliably manage everything. And because of that, many companies decide to centralize this effort in an internal ML platform. But how to build it?

ML 59
article thumbnail

How to Build a CI/CD MLOps Pipeline [Case Study]

The MLOps Blog

This includes the tools and techniques we used to streamline the ML model development and deployment processes, as well as the measures taken to monitor and maintain models in a production environment. Costs: Oftentimes, cost is the most important aspect of any ML model deployment. This includes data quality, privacy, and compliance.

ETL 52
article thumbnail

Learnings From Building the ML Platform at Stitch Fix

The MLOps Blog

This article was originally an episode of the ML Platform Podcast , a show where Piotr Niedźwiedź and Aurimas Griciūnas, together with ML platform professionals, discuss design choices, best practices, example tool stacks, and real-world learnings from some of the best ML platform professionals. Stefan: Yeah.

ML 52