Remove Data Drift Remove Data Science Remove ETL
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning Blog

Many organizations have been using a combination of on-premises and open source data science solutions to create and manage machine learning (ML) models. Data science and DevOps teams may face challenges managing these isolated tool stacks and systems.

article thumbnail

How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue

AWS Machine Learning Blog

Challenges In this section, we discuss challenges around various data sources, data drift caused by internal or external events, and solution reusability. For example, Amazon Forecast supports related time series data like weather, prices, economic indicators, or promotions to reflect internal and external related events.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Schedule Amazon SageMaker notebook jobs and manage multi-step notebook workflows using APIs

AWS Machine Learning Blog

For instance, a notebook that monitors for model data drift should have a pre-step that allows extract, transform, and load (ETL) and processing of new data and a post-step of model refresh and training in case a significant drift is noticed. Ram Vegiraju is a ML Architect with the SageMaker Service team.

article thumbnail

Learnings From Building the ML Platform at Stitch Fix

The MLOps Blog

At a high level, we are trying to make machine learning initiatives more human capital efficient by enabling teams to more easily get to production and maintain their model pipelines, ETLs, or workflows. As you’ve been running the ML data platform team, how do you do that? If you can be data-driven, that is the best.

ML 52