Remove Data Discovery Remove ETL Remove Metadata
article thumbnail

IBM watsonx Platform: Compliance obligations to controls mapping

IBM Journey to AI blog

The enhanced metadata supports the matching categories to internal controls and other relevant policy and governance datasets. This approach enables centralized access and sharing while minimizing extract, transform and load (ETL) processes and data duplication.

article thumbnail

Build trust in banking with data lineage

IBM Journey to AI blog

This trust depends on an understanding of the data that inform risk models: where does it come from, where is it being used, and what are the ripple effects of a change? Moreover, banks must stay in compliance with industry regulations like BCBS 239, which focus on improving banks’ risk data aggregation and risk reporting capabilities.

ETL 243
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Data platform trinity: Competitive or complementary?

IBM Journey to AI blog

They defined it as : “ A data lakehouse is a new, open data management architecture that combines the flexibility, cost-efficiency, and scale of data lakes with the data management and ACID transactions of data warehouses, enabling business intelligence (BI) and machine learning (ML) on all data. ”.

article thumbnail

AI that’s ready for business starts with data that’s ready for AI

IBM Journey to AI blog

Open is creating a foundation for storing, managing, integrating and accessing data built on open and interoperable capabilities that span hybrid cloud deployments, data storage, data formats, query engines, governance and metadata.

Metadata 113
article thumbnail

Data architecture strategy for data quality

IBM Journey to AI blog

The right data architecture can help your organization improve data quality because it provides the framework that determines how data is collected, transported, stored, secured, used and shared for business intelligence and data science use cases. Perform data quality monitoring based on pre-configured rules.

article thumbnail

Unfolding the Details of Hive in Hadoop

Pickl AI

These work together to enable efficient data processing and analysis: · Hive Metastore It is a central repository that stores metadata about Hive’s tables, partitions, and schemas. Processing of Data Once the data is stored, Hive provides a metadata layer allowing users to define the schema and create tables.