This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Dataplatform architecture has an interesting history. A read-optimized platform that can integrate data from multiple applications emerged. In another decade, the internet and mobile started the generate data of unforeseen volume, variety and velocity. It required a different dataplatform solution.
Even among datasets that include the same subject matter, there is no standard layout of files or data formats. This obstacle lowers productivity through machine learning development—from datadiscovery to model training. Database metadata can be expressed in various formats, including schema.org and DCAT.
The first generation of data architectures represented by enterprise data warehouse and business intelligence platforms were characterized by thousands of ETL jobs, tables, and reports that only a small group of specialized data engineers understood, resulting in an under-realized positive impact on the business.
Open is creating a foundation for storing, managing, integrating and accessing data built on open and interoperable capabilities that span hybrid cloud deployments, data storage, data formats, query engines, governance and metadata.
The application needs to search through the catalog and show the metadata information related to all of the data assets that are relevant to the search context. Solution overview The solution integrates with your existing data catalogs and repositories, creating a unified, scalable semantic layer across the entire data landscape.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content