Remove Data Discovery Remove Data Integration Remove Metadata
article thumbnail

Five benefits of a data catalog

IBM Journey to AI blog

An enterprise data catalog does all that a library inventory system does – namely streamlining data discovery and access across data sources – and a lot more. For example, data catalogs have evolved to deliver governance capabilities like managing data quality and data privacy and compliance.

Metadata 130
article thumbnail

Data architecture strategy for data quality

IBM Journey to AI blog

Both approaches were typically monolithic and centralized architectures organized around mechanical functions of data ingestion, processing, cleansing, aggregation, and serving. Monitor and identify data quality issues closer to the source to mitigate the potential impact on downstream processes or workloads.

article thumbnail

Unfolding the difference between Data Observability and Data Quality

Pickl AI

Data Transparency Data Transparency is the pillar that ensures data is accessible and understandable to all stakeholders within an organization. This involves creating data dictionaries, documentation, and metadata. It provides clear insights into the data’s structure, meaning, and usage.