This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This post gives a brief overview of modularity in deeplearning. Fuelled by scaling laws, state-of-the-art models in machine learning have been growing larger and larger. We give an in-depth overview of modularity in our survey on Modular DeepLearning. Case studies of modular deeplearning.
Hyperparameter optimization is highly computationally demanding for deeplearning models. Conclusion In this post, we showed how to use an EKS cluster with Weights & Biases to accelerate hyperparameter grid search for deeplearning models. script exists in a Docker image that copies data from Amazon S3 to Amazon EFS.
Linguistic Parameters of Spontaneous Speech for Identifying Mild Cognitive Impairment and Alzheimer Disease Veronika Vincze, Martina Katalin Szabó, Ildikó Hoffmann, László Tóth, Magdolna Pákáski, János Kálmán, Gábor Gosztolya. ComputationalLinguistics 2022. Additive embeddings are used for representing metadata about each note.
70% of research papers published in a computationallinguistics conference only evaluated English.[ I additionally use metadata from The World Atlas of Language Structures to obtain information such as language family (e.g. Association for ComputationalLinguistics. Association for ComputationalLinguistics.
This post is partially based on a keynote I gave at the DeepLearning Indaba 2022. These include groups focusing on linguistic regions such as Masakhane for African languages, AmericasNLP for native American languages, IndoNLP for Indonesian languages, GhanaNLP and HausaNLP , among others. Lucassen, T., 2340–2354).
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content