This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
IDP is powering critical workflows across industries and enabling businesses to scale with speed and accuracy. Financial institutions use IDP to automate tax forms and fraud detection , while healthcare providers streamline claims processing and medical record digitization. billion in 2025 to USD 66.68
This represents a major opportunity for businesses to optimize this workflow, save time and money, and improve accuracy by modernizing antiquated manual document handling with intelligent document processing (IDP) on AWS. There may occasionally be different sorts of documents and no automatic method for identifying and categorizing them.
Document processing has witnessed significant advancements with the advent of Intelligent Document Processing (IDP). With IDP, businesses can transform unstructured data from various document types into structured, actionable insights, dramatically enhancing efficiency and reducing manual efforts.
How prompt caching works Large language model (LLM) processing is made up of two primary stages: input token processing and output token generation. As you send more requests with the same prompt prefix, marked by the cache checkpoint, the LLM will check if the prompt prefix is already stored in the cache.
With Intelligent Document Processing (IDP) leveraging artificial intelligence (AI), the task of extracting data from large amounts of documents with differing types and structures becomes efficient and accurate. The following diagram is how we visualize these IDP phases.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content