This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Next, Amazon Comprehend or custom classifiers categorize them into types such as W2s, bank statements, and closing disclosures, while Amazon Textract extracts key details. Additional processing is needed to standardize formats, manage JSON outputs, and align data fields, often requiring manual integration and multiple API calls.
Why it’s challenging to process and manage unstructured data Unstructured data makes up a large proportion of the data in the enterprise that can’t be stored in a traditional relational database management systems (RDBMS). Understanding the data, categorizing it, storing it, and extracting insights from it can be challenging.
Researchers can use simple search queries to find what they're looking for and compare responses across different sessions to identify patterns or outliers in the data. Beyond basic tagging and categorization, Speech AI can also help with more nuanced parameters, such as speaker identification, sentiment, and thematic content.
The documentation can also include DICOM or other medical images, where both metadata and text information shown on the image needs to be converted to plain text. The OCR engine needs to be enterprise-level, i.e., robust, accurate, and scalable for large volumes of data.
Sensitive dataextraction and redaction LLMs show promise for extracting sensitive information for redaction. This technique helps create structured data from unstructured text and provides useful contextual information for many downstream NLP tasks. Intents are categorized into two levels: main intent and sub intent.
Developing a machine learning model requires a big amount of training data. Therefore, the data needs to be properly labeled/categorized for a particular use case. Companies can use high-quality human-powered data annotation services to enhance ML and AI implementations.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content