Remove Blog Remove Data Platform Remove DevOps Remove ML Engineer
article thumbnail

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

AWS Machine Learning Blog

Axfood has a structure with multiple decentralized data science teams with different areas of responsibility. Together with a central data platform team, the data science teams bring innovation and digital transformation through AI and ML solutions to the organization.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

The architecture maps the different capabilities of the ML platform to AWS accounts. The functional architecture with different capabilities is implemented using a number of AWS services, including AWS Organizations , SageMaker, AWS DevOps services, and a data lake.

ML 101
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Learnings From Building the ML Platform at Mailchimp

The MLOps Blog

I switched from analytics to data science, then to machine learning, then to data engineering, then to MLOps. For me, it was a little bit of a longer journey because I kind of had data engineering and cloud engineering and DevOps engineering in between. It’s two things. How awful are they?”

ML 52
article thumbnail

Learnings From Building the ML Platform at Stitch Fix

The MLOps Blog

Stefan is a software engineer, data scientist, and has been doing work as an ML engineer. He also ran the data platform in his previous company and is also co-creator of open-source framework, Hamilton. As you’ve been running the ML data platform team, how do you do that?

ML 52
article thumbnail

Definite Guide to Building a Machine Learning Platform

The MLOps Blog

From gathering and processing data to building models through experiments, deploying the best ones, and managing them at scale for continuous value in production—it’s a lot. As the number of ML-powered apps and services grows, it gets overwhelming for data scientists and ML engineers to build and deploy models at scale.