article thumbnail

Enhancing AI Transparency and Trust with Composite AI

Unite.AI

The adoption of Artificial Intelligence (AI) has increased rapidly across domains such as healthcare, finance, and legal systems. However, this surge in AI usage has raised concerns about transparency and accountability. Composite AI is a cutting-edge approach to holistically tackling complex business problems.

article thumbnail

Is Rapid AI Adoption Posing Serious Risks for Corporations?

ODSC - Open Data Science

Transparency The lack of transparency in many AI models can also cause issues. Users may not understand how these systems work and it can be difficult to figure out, especially with black-box AI. Being unable to resolve things could lead businesses to experience significant losses from unreliable AI applications.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Do Inherently Interpretable AI Models Work? — GAMINET

Towards AI

It is very risky to apply these black-box AI systems in real-life applications, especially in sectors like banking and healthcare. The models are becoming more and more complex with deeper layers leading to greater accuracy. One issue with this current trend is the focus on interpretability is lost at times.

article thumbnail

Forecast Time Series at Scale with Google BigQuery and DataRobot

DataRobot Blog

As data scientists might put it, adding a time component to any data science problem makes things significantly harder. As experienced data scientists, we understand that modeling is only part of our work. We want to avoid that “black box AI” where it’s unclear why certain decisions were made.