Remove Big Data Remove Data Quality Remove DevOps
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

It serves as the hub for defining and enforcing data governance policies, data cataloging, data lineage tracking, and managing data access controls across the organization. Data lake account (producer) – There can be one or more data lake accounts within the organization.

ML 130
article thumbnail

9 data governance strategies that will unlock the potential of your business data

IBM Journey to AI blog

Access to high-quality data can help organizations start successful products, defend against digital attacks, understand failures and pivot toward success. Emerging technologies and trends, such as machine learning (ML), artificial intelligence (AI), automation and generative AI (gen AI), all rely on good data quality.

Metadata 188
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

Databricks Databricks is a cloud-native platform for big data processing, machine learning, and analytics built using the Data Lakehouse architecture. Delta Lake Delta Lake is an open-source storage layer that provides reliability, ACID transactions, and data versioning for big data processing frameworks such as Apache Spark.

article thumbnail

MLOps for batch inference with model monitoring and retraining using Amazon SageMaker, HashiCorp Terraform, and GitLab CI/CD

AWS Machine Learning Blog

This architecture design represents a multi-account strategy where ML models are built, trained, and registered in a central model registry within a data science development account (which has more controls than a typical application development account). Refer to Operating model for best practices regarding a multi-account strategy for ML.

article thumbnail

Create SageMaker Pipelines for training, consuming and monitoring your batch use cases

AWS Machine Learning Blog

See the following code: # Configure the Data Quality Baseline Job # Configure the transient compute environment check_job_config = CheckJobConfig( role=role_arn, instance_count=1, instance_type="ml.c5.xlarge", These are key files calculated from raw data used as a baseline.

article thumbnail

MLOps deployment best practices for real-time inference model serving endpoints with Amazon SageMaker

AWS Machine Learning Blog

When the model update process is complete, SageMaker Model Monitor continually monitors the model performance for drifts into the model and data quality. She is currently focusing on combining her DevOps and ML background into the domain of MLOps to help customers deliver and manage ML workloads at scale.

ML 84
article thumbnail

Shadi Rostami, SVP of Engineering at Amplitude – Interview Series

Unite.AI

She has innovated and delivered several product lines and services specializing in distributed systems, cloud computing, big data, machine learning and security. In your experience, what are the most significant challenges organizations face in achieving data democratization, and how can they overcome these obstacles?

DevOps 147