Remove Automation Remove Explainability Remove Responsible AI
article thumbnail

Responsible AI can revolutionize tax agencies to improve citizen services

IBM Journey to AI blog

However, the latest CEO Study by the IBM Institute for the Business Value found that 72% of the surveyed government leaders say that the potential productivity gains from AI and automation are so great that they must accept significant risk to stay competitive. Learn more about how watsonx can help usher in governments into the future.

article thumbnail

Delivering responsible AI in the healthcare and life sciences industry

IBM Journey to AI blog

Curating AI responsibly is a sociotechnical challenge that requires a holistic approach. There are many elements required to earn people’s trust, including making sure that your AI model is accurate, auditable, explainable, fair and protective of people’s data privacy. Require transparency.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Advancing AI trust with new responsible AI tools, capabilities, and resources

AWS Machine Learning Blog

As generative AI continues to drive innovation across industries and our daily lives, the need for responsible AI has become increasingly important. At AWS, we believe the long-term success of AI depends on the ability to inspire trust among users, customers, and society.

article thumbnail

Balancing innovation and trust: Experts assess the EU’s AI Act

AI News

As the EU’s AI Act prepares to come into force tomorrow, industry experts are weighing in on its potential impact, highlighting its role in building trust and encouraging responsible AI adoption. “The greatest problem facing AI developers is not regulation, but a lack of trust in AI,” Wilson stated.

Big Data 334
article thumbnail

3 key reasons why your organization needs Responsible AI

IBM Journey to AI blog

Gartner predicts that the market for artificial intelligence (AI) software will reach almost $134.8 Achieving Responsible AI As building and scaling AI models for your organization becomes more business critical, achieving Responsible AI (RAI) should be considered a highly relevant topic. billion by 2025.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning Blog

The rapid advancement of generative AI promises transformative innovation, yet it also presents significant challenges. Concerns about legal implications, accuracy of AI-generated outputs, data privacy, and broader societal impacts have underscored the importance of responsible AI development.

article thumbnail

Bring light to the black box

IBM Journey to AI blog

A lack of confidence to operationalize AI Many organizations struggle when adopting AI. According to Gartner , 54% of models are stuck in pre-production because there is not an automated process to manage these pipelines and there is a need to ensure the AI models can be trusted.

Metadata 227