Remove Auto-complete Remove ML Remove Software Engineer
article thumbnail

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams

Towards AI

From Solo Notebooks to Collaborative Powerhouse: VS Code Extensions for Data Science and ML Teams Photo by Parabol | The Agile Meeting Toolbox on Unsplash In this article, we will explore the essential VS Code extensions that enhance productivity and collaboration for data scientists and machine learning (ML) engineers.

article thumbnail

Host ML models on Amazon SageMaker using Triton: CV model with PyTorch backend

AWS Machine Learning Blog

PyTorch is a machine learning (ML) framework based on the Torch library, used for applications such as computer vision and natural language processing. This provides a major flexibility advantage over the majority of ML frameworks, which require neural networks to be defined as static objects before runtime. xlarge instance.

ML 117
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Federated learning on AWS using FedML, Amazon EKS, and Amazon SageMaker

AWS Machine Learning Blog

Many organizations are implementing machine learning (ML) to enhance their business decision-making through automation and the use of large distributed datasets. With increased access to data, ML has the potential to provide unparalleled business insights and opportunities.

article thumbnail

Improved ML model deployment using Amazon SageMaker Inference Recommender

AWS Machine Learning Blog

Each machine learning (ML) system has a unique service level agreement (SLA) requirement with respect to latency, throughput, and cost metrics. Based on Inference Recommender’s instance type recommendations, we can find the right real-time serving ML instances that yield the right price-performance for this use case.

ML 101
article thumbnail

Introducing automatic training for solutions in Amazon Personalize

AWS Machine Learning Blog

Amazon Personalize accelerates your digital transformation with machine learning (ML), making it effortless to integrate personalized recommendations into existing websites, applications, email marketing systems, and more. A solution version refers to a trained ML model. All your data is encrypted to be private and secure.

article thumbnail

Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker

AWS Machine Learning Blog

We’re excited to announce the release of SageMaker Core , a new Python SDK from Amazon SageMaker designed to offer an object-oriented approach for managing the machine learning (ML) lifecycle. With SageMaker Core, managing ML workloads on SageMaker becomes simpler and more efficient. and above. Any version above 2.231.0

Python 90
article thumbnail

Boost productivity on Amazon SageMaker Studio: Introducing JupyterLab Spaces and generative AI tools

AWS Machine Learning Blog

Amazon SageMaker Studio offers a broad set of fully managed integrated development environments (IDEs) for machine learning (ML) development, including JupyterLab, Code Editor based on Code-OSS (Visual Studio Code Open Source), and RStudio. It’s attached to a ML compute instance whenever a Space is run. Choose Create JupyterLab space.