Remove Auto-complete Remove ML Remove Software Development
article thumbnail

Building Generative AI and ML solutions faster with AI apps from AWS partners using Amazon SageMaker

AWS Machine Learning Blog

Our customers want a simple and secure way to find the best applications, integrate the selected applications into their machine learning (ML) and generative AI development environment, manage and scale their AI projects. This increases the time it takes for customers to go from data to insights.

ML 133
article thumbnail

Retrain ML models and automate batch predictions in Amazon SageMaker Canvas using updated datasets

AWS Machine Learning Blog

You can now retrain machine learning (ML) models and automate batch prediction workflows with updated datasets in Amazon SageMaker Canvas , thereby making it easier to constantly learn and improve the model performance and drive efficiency. An ML model’s effectiveness depends on the quality and relevance of the data it’s trained on.

ML 97
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 2: Interactive User Experiences in SageMaker Studio

AWS Machine Learning Blog

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at scale. For more information, refer to Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 1: PySDK Improvements.

ML 126
article thumbnail

MIT Researchers Introduce LILO: A Neuro-Symbolic Framework for Learning Interpretable Libraries for Program Synthesis

Marktechpost

Software developers, however, are more interested in creating libraries that may be used to solve whole problem domains than they are in finishing the current work at hand. Figure 1: The LILO learning loop overview. (Al) Al) Using a dual-system search methodology, LILO creates programs from task descriptions written in plain language.

article thumbnail

Introducing automatic training for solutions in Amazon Personalize

AWS Machine Learning Blog

Amazon Personalize accelerates your digital transformation with machine learning (ML), making it effortless to integrate personalized recommendations into existing websites, applications, email marketing systems, and more. A solution version refers to a trained ML model. All your data is encrypted to be private and secure.

article thumbnail

Deploy a Hugging Face (PyAnnote) speaker diarization model on Amazon SageMaker as an asynchronous endpoint

AWS Machine Learning Blog

The added benefit of asynchronous inference is the cost savings by auto scaling the instance count to zero when there are no requests to process. Hugging Face is a popular open source hub for machine learning (ML) models. Prerequisites Complete the following prerequisites: Create a SageMaker domain.

article thumbnail

Deploy Meta Llama 3.1-8B on AWS Inferentia using Amazon EKS and vLLM

AWS Machine Learning Blog

8B model With the setup complete, you can now deploy the model using a Kubernetes deployment. Complete the following steps: Check the deployment status: kubectl get deployments This will show you the desired, current, and up-to-date number of replicas. AWS_REGION.amazonaws.com/${ECR_REPO_NAME}:latest Deploy the Meta Llama 3.1-8B