Remove Auto-classification Remove ML Engineer Remove Prompt Engineering
article thumbnail

From concept to reality: Navigating the Journey of RAG from proof of concept to production

AWS Machine Learning Blog

Machine learning (ML) engineers must make trade-offs and prioritize the most important factors for their specific use case and business requirements. For more information on application security, refer to Safeguard a generative AI travel agent with prompt engineering and Amazon Bedrock Guardrails.

article thumbnail

Benchmarking Computer Vision Models using PyTorch & Comet

Heartbeat

Make sure that you import Comet library before PyTorch to benefit from auto logging features Choosing Models for Classification When it comes to choosing a computer vision model for a classification task, there are several factors to consider, such as accuracy, speed, and model size. Pre-trained models, such as VGG, ResNet.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

The platform also offers features for hyperparameter optimization, automating model training workflows, model management, prompt engineering, and no-code ML app development. Some of its features include a data labeling workforce, annotation workflows, active learning and auto-labeling, scalability and infrastructure, and so on.

article thumbnail

Virtual fashion styling with generative AI using Amazon SageMaker 

AWS Machine Learning Blog

This blog post details the implementation of generative AI-assisted fashion online styling using text prompts. Machine learning (ML) engineers can fine-tune and deploy text-to-semantic-segmentation and in-painting models based on pre-trained CLIPSeq and Stable Diffusion with Amazon SageMaker.