Remove Auto-classification Remove ML Engineer Remove Prompt Engineering
article thumbnail

Benchmarking Computer Vision Models using PyTorch & Comet

Heartbeat

Make sure that you import Comet library before PyTorch to benefit from auto logging features Choosing Models for Classification When it comes to choosing a computer vision model for a classification task, there are several factors to consider, such as accuracy, speed, and model size. Pre-trained models, such as VGG, ResNet.

article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

The platform also offers features for hyperparameter optimization, automating model training workflows, model management, prompt engineering, and no-code ML app development. Some of its features include a data labeling workforce, annotation workflows, active learning and auto-labeling, scalability and infrastructure, and so on.

article thumbnail

Virtual fashion styling with generative AI using Amazon SageMaker 

AWS Machine Learning Blog

This blog post details the implementation of generative AI-assisted fashion online styling using text prompts. Machine learning (ML) engineers can fine-tune and deploy text-to-semantic-segmentation and in-painting models based on pre-trained CLIPSeq and Stable Diffusion with Amazon SageMaker.