Remove Auto-classification Remove Metadata Remove ML Engineer
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

When thinking about a tool for metadata storage and management, you should consider: General business-related items : Pricing model, security, and support. When thinking about a tool for metadata storage and management, you should consider: General business-related items : Pricing model, security, and support. Can you compare images?

article thumbnail

How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue

AWS Machine Learning Blog

The ETL pipeline, MLOps pipeline, and ML inference should be rebuilt in a different AWS account. To solve this problem, we make the ML solution auto-deployable with a few configuration changes. ML engineers no longer need to manage this training metadata separately.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

However, model governance functions in an organization are centralized and to perform those functions, teams need access to metadata about model lifecycle activities across those accounts for validation, approval, auditing, and monitoring to manage risk and compliance. region_name ram_client = boto3.client('ram')

ML 86