Remove Auto-classification Remove DevOps Remove Software Engineer
article thumbnail

Top MLOps Tools Guide: Weights & Biases, Comet and More

Unite.AI

It combines principles from DevOps, such as continuous integration, continuous delivery, and continuous monitoring, with the unique challenges of managing machine learning models and datasets. It checks data and model quality, data drift, target drift, and regression and classification performance. What is MLOps?

article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

Some of its features include a data labeling workforce, annotation workflows, active learning and auto-labeling, scalability and infrastructure, and so on. The platform provides a comprehensive set of annotation tools, including object detection, segmentation, and classification.