Remove Auto-classification Remove Deep Learning Remove ML
article thumbnail

UC Berkeley Researchers Propose CRATE: A Novel White-Box Transformer for Efficient Data Compression and Sparsification in Deep Learning

Marktechpost

The practical success of deep learning in processing and modeling large amounts of high-dimensional and multi-modal data has grown exponentially in recent years. Such a representation makes many subsequent tasks, including those involving vision, classification, recognition and segmentation, and generation, easier.

article thumbnail

LightAutoML: AutoML Solution for a Large Financial Services Ecosystem

Unite.AI

It was in 2014 when ICML organized the first AutoML workshop that AutoML gained the attention of ML developers. A majority of these frameworks implement a general purpose AutoML solution that develops ML-based models automatically across different classes of applications across financial services, healthcare, education, and more.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Harmonize data using AWS Glue and AWS Lake Formation FindMatches ML to build a customer 360 view

Flipboard

These techniques utilize various machine learning (ML) based approaches. In this post, we look at how we can use AWS Glue and the AWS Lake Formation ML transform FindMatches to harmonize (deduplicate) customer data coming from different sources to get a complete customer profile to be able to provide better customer experience.

article thumbnail

Human Pose Estimation with Deep Learning – Ultimate Overview in 2024

Viso.ai

How pose estimation works: Deep learning methods Use Cases and pose estimation applications How to get started with AI motion analysis Real-time full body pose estimation in construction – built with Viso Suite About us: Viso.ai Definition: What is pose estimation? Variations: Head pose estimation, animal pose estimation, etc.

article thumbnail

TinyML: Applications, Limitations, and It’s Use in IoT & Edge Devices

Unite.AI

In the past few years, Artificial Intelligence (AI) and Machine Learning (ML) have witnessed a meteoric rise in popularity and applications, not only in the industry but also in academia. It’s the major reason why its difficult to build a standard ML architecture for IoT networks.

article thumbnail

Host ML models on Amazon SageMaker using Triton: CV model with PyTorch backend

AWS Machine Learning Blog

PyTorch is a machine learning (ML) framework based on the Torch library, used for applications such as computer vision and natural language processing. This provides a major flexibility advantage over the majority of ML frameworks, which require neural networks to be defined as static objects before runtime.

ML 117
article thumbnail

Top TensorFlow Courses

Marktechpost

This article lists the top TensorFlow courses that can help you gain the expertise needed to excel in the field of AI and machine learning. TensorFlow fundamentals This course introduces the fundamentals of deep learning with TensorFlow, covering key concepts and practical knowledge for building machine learning models.