Remove Auto-classification Remove Data Science Remove ML Engineer
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

Optionally, if Account A and Account B are part of the same AWS Organizations, and the resource sharing is enabled within AWS Organizations, then the resource sharing invitation are auto accepted without any manual intervention. format(resource_share_arn)) Run the following code in the ML Dev account (Account B).

ML 89
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

With built-in components and integration with Google Cloud services, Vertex AI simplifies the end-to-end machine learning process, making it easier for data science teams to build and deploy models at scale. Metaflow Metaflow helps data scientists and machine learning engineers build, manage, and deploy data science projects.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

DataRobot Notebooks: Enhanced Code-First Experience for Rapid AI Experimentation

DataRobot Blog

ML model builders spend a ton of time running multiple experiments in a data science notebook environment before moving the well-tested and robust models from those experiments to a secure, production-grade environment for general consumption. 42% of data scientists are solo practitioners or on teams of five or fewer people.

article thumbnail

How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue

AWS Machine Learning Blog

The ETL pipeline, MLOps pipeline, and ML inference should be rebuilt in a different AWS account. To solve this problem, we make the ML solution auto-deployable with a few configuration changes. ML engineers no longer need to manage this training metadata separately.

article thumbnail

Benchmarking Computer Vision Models using PyTorch & Comet

Heartbeat

Make sure that you import Comet library before PyTorch to benefit from auto logging features Choosing Models for Classification When it comes to choosing a computer vision model for a classification task, there are several factors to consider, such as accuracy, speed, and model size. Pre-trained models, such as VGG, ResNet.