Remove Auto-classification Remove Data Quality Remove Software Engineer
article thumbnail

MLOps Landscape in 2023: Top Tools and Platforms

The MLOps Blog

Data quality control: Robust dataset labeling and annotation tools incorporate quality control mechanisms such as inter-annotator agreement analysis, review workflows, and data validation checks to ensure the accuracy and reliability of annotations. It is part of the Encord suite of products alongside Encord Active.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

It includes processes for monitoring model performance, managing risks, ensuring data quality, and maintaining transparency and accountability throughout the model’s lifecycle. It’s a binary classification problem where the goal is to predict whether a customer is a credit risk. region_name ram_client = boto3.client('ram')

ML 108
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building better datasets with Snorkel Flow error analysis

Snorkel AI

If you’re not familiar with the Snorkel Flow platform, the iteration loop looks like this: Label programmatically: Encode labeling rationale as labeling functions (LFs) that the platform uses as sources of weak supervision to intelligently auto-label training data at scale. Auto-generated tag-based LFs. Job categories.

article thumbnail

Building better datasets with Snorkel Flow error analysis

Snorkel AI

If you’re not familiar with the Snorkel Flow platform, the iteration loop looks like this: Label programmatically: Encode labeling rationale as labeling functions (LFs) that the platform uses as sources of weak supervision to intelligently auto-label training data at scale. Auto-generated tag-based LFs. Job categories.