This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In a single visual interface, you can complete each step of a data preparation workflow: data selection, cleansing, exploration, visualization, and processing. Custom Spark commands can also expand the over 300 built-in data transformations. Other analyses are also available to help you visualize and understand your data.
Pixability is a data and technology company that allows advertisers to quickly pinpoint the right content and audience on YouTube. To help brands maximize their reach, they need to constantly and accurately categorize billions of YouTube videos. Using AI to help customers optimize ad spending and maximize their reach on YouTube.
Scaling clinical trial screening with document classification Memorial Sloan Kettering Cancer Center, the world’s oldest and largest private cancer center, provides care to increase the quality of life of more than 150,000 cancer patients annually. Watch this and many other sessions on-demand at future.snorkel.ai.
It also enables you to evaluate the models using advanced metrics as if you were a data scientist. In this post, we show how a business analyst can evaluate and understand a classification churn model created with SageMaker Canvas using the Advanced metrics tab.
If you’re not familiar with the Snorkel Flow platform, the iteration loop looks like this: Label programmatically: Encode labeling rationale as labeling functions (LFs) that the platform uses as sources of weak supervision to intelligently auto-label training data at scale. Auto-generated tag-based LFs.
If you’re not familiar with the Snorkel Flow platform, the iteration loop looks like this: Label programmatically: Encode labeling rationale as labeling functions (LFs) that the platform uses as sources of weak supervision to intelligently auto-label training data at scale. Auto-generated tag-based LFs.
It includes processes for monitoring model performance, managing risks, ensuring dataquality, and maintaining transparency and accountability throughout the model’s lifecycle. It’s a binary classification problem where the goal is to predict whether a customer is a credit risk. region_name ram_client = boto3.client('ram')
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content