Remove Auto-classification Remove Auto-complete Remove ML
article thumbnail

Researchers from Fudan University and Shanghai AI Lab Introduces DOLPHIN: A Closed-Loop Framework for Automating Scientific Research with Iterative Feedback

Marktechpost

Researchers want to create a system that eventually learns to bypass humans completely by completing the research cycle without human involvement. Fudan University and the Shanghai Artificial Intelligence Laboratory have developed DOLPHIN, a closed-loop auto-research framework covering the entire scientific research process.

article thumbnail

Harmonize data using AWS Glue and AWS Lake Formation FindMatches ML to build a customer 360 view

Flipboard

These techniques utilize various machine learning (ML) based approaches. In this post, we look at how we can use AWS Glue and the AWS Lake Formation ML transform FindMatches to harmonize (deduplicate) customer data coming from different sources to get a complete customer profile to be able to provide better customer experience.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts.

ML 104
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker , a fully managed ML service, with requirements to develop features offline in a code way or low-code/no-code way, store featured data from Amazon Redshift, and make this happen at scale in a production environment.

ML 123
article thumbnail

Host ML models on Amazon SageMaker using Triton: CV model with PyTorch backend

AWS Machine Learning Blog

PyTorch is a machine learning (ML) framework based on the Torch library, used for applications such as computer vision and natural language processing. This provides a major flexibility advantage over the majority of ML frameworks, which require neural networks to be defined as static objects before runtime.

ML 117
article thumbnail

Federated learning on AWS using FedML, Amazon EKS, and Amazon SageMaker

AWS Machine Learning Blog

Many organizations are implementing machine learning (ML) to enhance their business decision-making through automation and the use of large distributed datasets. With increased access to data, ML has the potential to provide unparalleled business insights and opportunities.

article thumbnail

Automate video insights for contextual advertising using Amazon Bedrock Data Automation

AWS Machine Learning Blog

Based on this classification, it then decides whether to establish boundaries using visual-based shot sequences or audio-based conversation topics. Video The complete content that enables analysis at the full video level. Along with the summary, BDA generates a complete audio transcript that includes speaker identification.