Remove Auto-classification Remove Auto-complete Remove Deep Learning
article thumbnail

UC Berkeley Researchers Propose CRATE: A Novel White-Box Transformer for Efficient Data Compression and Sparsification in Deep Learning

Marktechpost

The practical success of deep learning in processing and modeling large amounts of high-dimensional and multi-modal data has grown exponentially in recent years. Such a representation makes many subsequent tasks, including those involving vision, classification, recognition and segmentation, and generation, easier.

article thumbnail

Harmonize data using AWS Glue and AWS Lake Formation FindMatches ML to build a customer 360 view

Flipboard

In this post, we look at how we can use AWS Glue and the AWS Lake Formation ML transform FindMatches to harmonize (deduplicate) customer data coming from different sources to get a complete customer profile to be able to provide better customer experience. The following diagram shows our solution architecture.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Training a Custom Image Classification Network for OAK-D

PyImageSearch

Table of Contents Training a Custom Image Classification Network for OAK-D Configuring Your Development Environment Having Problems Configuring Your Development Environment? Furthermore, this tutorial aims to develop an image classification model that can learn to classify one of the 15 vegetables (e.g.,

article thumbnail

Understanding Graph Neural Network with hands-on example| Part-1

Becoming Human

Photo by NASA on Unsplash Hello and welcome to this post, in which I will study a relatively new field in deep learning involving graphs — a very important and widely used data structure. This post includes the fundamentals of graphs, combining graphs and deep learning, and an overview of Graph Neural Networks and their applications.

article thumbnail

How to Use Hugging Face Pipelines?

Towards AI

A practical guide on how to perform NLP tasks with Hugging Face Pipelines Image by Canva With the libraries developed recently, it has become easier to perform deep learning analysis. Hugging Face is a platform that provides pre-trained language models for NLP tasks such as text classification, sentiment analysis, and more.

article thumbnail

Boost inference performance for Mixtral and Llama 2 models with new Amazon SageMaker containers

AWS Machine Learning Blog

of Large Model Inference (LMI) Deep Learning Containers (DLCs). The complete notebook with detailed instructions is available in the GitHub repo. For the TensorRT-LLM container, we use auto. In January 2024, Amazon SageMaker launched a new version (0.26.0) It is returned with the last streamed sequence chunk.

article thumbnail

Host ML models on Amazon SageMaker using Triton: CV model with PyTorch backend

AWS Machine Learning Blog

When configuring your auto scaling groups for SageMaker endpoints, you may want to consider SageMakerVariantInvocationsPerInstance as the primary criteria to determine the scaling characteristics of your auto scaling group. Note that although the MMS configurations don’t apply in this case, the policy considerations still do.)

ML 121