This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the Tokyo University of Science (TUS) have developed a method to enable large-scale AI models to selectively “forget” specific classes of data. Progress in AI has provided tools capable of revolutionising various domains, from healthcare to autonomous driving.
Aviation professionals can apply AI-powered predictive analytics to improve safety in everything from aircraft design to airport logistics. AI can streamline and automate key safety processes such as design, monitoring, testing and more. AI monitoring reduces the risk of scenarios like this.
This is a promising shift for AI developers, and many organizations have realized impressive benefits from the technology, but it also comes with significant risks. AI’s rapid growth could lead more companies to implement it without fully understanding how to manage it safely and ethically. What Risks Does AI Pose to Corporations?
The stakes in managing model risk are at an all-time high, but luckily automated machine learning provides an effective way to reduce these risks. Among these, Spain, the United Kingdom, and the United States passed the highest number of AI-related bills in 2021 adopting three each. appeared first on DataRobot AI Cloud.
Auto-QA Today Contact center auto-QA (Quality Assurance) refers to the use of automated tools and technologies to assess and evaluate the quality of interactions between contact center agents and customers. These solutions are often powered by legacy AI systems that are limited in scope or worse, without AI at all.
Data scientists have used the DataRobot AI Cloud platform to build time series models for several years. With automated feature engineering, automated model development, and more explainable forecasts, data scientists can build more models with more accuracy, speed, and confidence. Forecasting the future is difficult.
Summary: Responsible AI ensures AI systems operate ethically, transparently, and accountably, addressing bias and societal risks. Through ethical guidelines, robust governance, and interdisciplinary collaboration, organisations can harness AI’s transformative power while safeguarding fairness and inclusivity.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content