This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Today, seven in 10 companies are experimenting with generative AI, meaning that the number of AI models in production will skyrocket over the coming years. As a result, industry discussions around responsibleAI have taken on greater urgency.
Gartner predicts that the market for artificial intelligence (AI) software will reach almost $134.8 Achieving ResponsibleAI As building and scaling AI models for your organization becomes more business critical, achieving ResponsibleAI (RAI) should be considered a highly relevant topic. billion by 2025.
For example, an AI model trained on biased or flawed data could disproportionately reject loan applications from certain demographic groups, potentially exposing banks to reputational risks, lawsuits, regulatory action, or a mix of the three. The average cost of a data breach in financial services is $4.45
Ensures Compliance : In industries with strict regulations, transparency is a must for explainingAI decisions and staying compliant. Helps Users Understand : Transparency makes AI easier to work with. Make AI Decisions Transparent and Accountable Transparency is everything when it comes to trust.
Generative AI (gen AI) introduces transformative innovation to all aspects of a business; from the front to the back office, through ongoing technology modernization, and into new product and service development. We refer to this transformation as becoming an AI+ enterprise. This requires a holistic enterprise transformation.
Reply: EverythingAI TM ’s full lifecycle support is crafted to help organizations overcome AI adoption challenges, ensuring better outcomes in productivity, customer experience, decision-making, and business reimagination. Explainability & Transparency: The company develops localized and explainableAI systems.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content