Remove AI Development Remove Explainability Remove Explainable AI
article thumbnail

Generative AI in the Healthcare Industry Needs a Dose of Explainability

Unite.AI

Increasingly though, large datasets and the muddled pathways by which AI models generate their outputs are obscuring the explainability that hospitals and healthcare providers require to trace and prevent potential inaccuracies. In this context, explainability refers to the ability to understand any given LLM’s logic pathways.

article thumbnail

Who Is Responsible If Healthcare AI Fails?

Unite.AI

Who is responsible when AI mistakes in healthcare cause accidents, injuries or worse? Depending on the situation, it could be the AI developer, a healthcare professional or even the patient. Liability is an increasingly complex and serious concern as AI becomes more common in healthcare. Not necessarily.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

FakeShield: An Explainable AI Framework for Universal Image Forgery Detection and Localization Using Multimodal Large Language Models

Marktechpost

To address these challenges, researchers are exploring Multimodal Large Language Models (M-LLMs) for more explainable IFDL, enabling clearer identification and localization of manipulated regions. Although these methods achieve satisfactory performance, they need more explainability and help to generalize across different datasets.

article thumbnail

Bridging code and conscience: UMD’s quest for ethical and inclusive AI

AI News

As artificial intelligence systems increasingly permeate critical decision-making processes in our everyday lives, the integration of ethical frameworks into AI development is becoming a research priority. Canavotto and her colleagues, Jeff Horty and Eric Pacuit, are developing a hybrid approach to combine the best of both approaches.

article thumbnail

Igor Jablokov, Pryon: Building a responsible AI future

AI News

The current incarnation of Pryon has aimed to confront AI’s ethical quandaries through responsible design focused on critical infrastructure and high-stakes use cases. “[We We wanted to] create something purposely hardened for more critical infrastructure, essential workers, and more serious pursuits,” Jablokov explained.

article thumbnail

AI’s Got Some Explaining to Do

Towards AI

Yet, for all their sophistication, they often can’t explain their choices — this lack of transparency isn’t just frustrating — it’s increasingly problematic as AI becomes more integrated into critical areas of our lives. What is Explainability AI (XAI)? It’s particularly useful in natural language processing [3].

article thumbnail

Enhancing AI Transparency and Trust with Composite AI

Unite.AI

As organizations strive for responsible and effective AI, Composite AI stands at the forefront, bridging the gap between complexity and clarity. The Need for Explainability The demand for Explainable AI arises from the opacity of AI systems, which creates a significant trust gap between users and these algorithms.