Remove AI Development Remove Black Box AI Remove Explainable AI
article thumbnail

Who Is Responsible If Healthcare AI Fails?

Unite.AI

Who is responsible when AI mistakes in healthcare cause accidents, injuries or worse? Depending on the situation, it could be the AI developer, a healthcare professional or even the patient. Liability is an increasingly complex and serious concern as AI becomes more common in healthcare. Not necessarily.

article thumbnail

Enhancing AI Transparency and Trust with Composite AI

Unite.AI

The adoption of Artificial Intelligence (AI) has increased rapidly across domains such as healthcare, finance, and legal systems. However, this surge in AI usage has raised concerns about transparency and accountability. Composite AI is a cutting-edge approach to holistically tackling complex business problems.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Unlocking the Black Box: LIME and SHAP in the Realm of Explainable AI

Mlearning.ai

Principles of Explainable AI( Source ) Imagine a world where artificial intelligence (AI) not only makes decisions but also explains them as clearly as a human expert. This isn’t a scene from a sci-fi movie; it’s the emerging reality of Explainable AI (XAI). What is Explainable AI?

article thumbnail

Using AI for Predictive Analytics in Aviation Safety

Aiiot Talk

When developers and users can’t see how AI connects data points, it is more challenging to notice flawed conclusions. Black-box AI poses a serious concern in the aviation industry. In fact, explainability is a top priority laid out in the European Union Aviation Safety Administration’s first-ever AI roadmap.