Remove AI Development Remove Algorithm Remove Explainable AI
article thumbnail

Who Is Responsible If Healthcare AI Fails?

Unite.AI

Who is responsible when AI mistakes in healthcare cause accidents, injuries or worse? Depending on the situation, it could be the AI developer, a healthcare professional or even the patient. Liability is an increasingly complex and serious concern as AI becomes more common in healthcare. Not necessarily.

article thumbnail

Bridging code and conscience: UMD’s quest for ethical and inclusive AI

AI News

As artificial intelligence systems increasingly permeate critical decision-making processes in our everyday lives, the integration of ethical frameworks into AI development is becoming a research priority. So, in this field, they developed algorithms to extract information from the data.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

With Generative AI Advances, The Time to Tackle Responsible AI Is Now

Unite.AI

However, only around 20% have implemented comprehensive programs with frameworks, governance, and guardrails to oversee AI model development and proactively identify and mitigate risks. Given the fast pace of AI development, leaders should move forward now to implement frameworks and mature processes.

article thumbnail

Generative AI in the Healthcare Industry Needs a Dose of Explainability

Unite.AI

Mystery and Skepticism In generative AI, the concept of understanding how an LLM gets from Point A – the input – to Point B – the output – is far more complex than with non-generative algorithms that run along more set patterns. Additionally, the continuously expanding datasets used by ML algorithms complicate explainability further.

article thumbnail

Enhancing AI Transparency and Trust with Composite AI

Unite.AI

As organizations strive for responsible and effective AI, Composite AI stands at the forefront, bridging the gap between complexity and clarity. The Need for Explainability The demand for Explainable AI arises from the opacity of AI systems, which creates a significant trust gap between users and these algorithms.

article thumbnail

When AI Poisons AI: The Risks of Building AI on AI-Generated Contents

Unite.AI

This content often fills the gap when data is scarce or diversifies the training material for AI models, sometimes without full recognition of its implications. While this expansion enriches the AI development landscape with varied datasets, it also introduces the risk of data contamination.

AI 189
article thumbnail

What Is Trustworthy AI?

NVIDIA

Trustworthy AI initiatives recognize the real-world effects that AI can have on people and society, and aim to channel that power responsibly for positive change. What Is Trustworthy AI? Trustworthy AI is an approach to AI development that prioritizes safety and transparency for those who interact with it.

AI 145