This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Tools such as Midjourney and ChatGPT are gaining attention for their capabilities in generating realistic images, video and sophisticated, human-like text, extending the limits of AI’s creative potential. Imagine training a generative AImodel on a dataset of only romance novels.
Why In-house AI Chip Development? Making AI Computing Energy-efficient and Sustainable The current generation of AI chips, which are designed for heavy computational tasks, tend to consume a lot of power , and generate significant heat. This has led to substantial environmental implications for training and using AImodels.
Set the right data foundations As a CEO aiming to use generative AI to achieve sustainability goals, remember that data is your differentiator. Purpose-built to handle deeplearningmodels at scale, Inf2 instances are indispensable for deploying ultra-large models while meeting sustainability goals through improved energy efficiency.
AI's Power Consumption Trends and Challenges AI's rapid advancement has led to an exponential increase in computational demands. Training complex AImodels, particularly deeplearningmodels, requires significant computational power.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content