This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Hence, introducing the concept of responsibleAI has become significant. ResponsibleAI focuses on harnessing the power of Artificial Intelligence while complying with designing, developing, and deploying AI with good intentions. By adopting responsibleAI, companies can positively impact the customer.
This blog outlines the foundational elements for AI success, ensuring smooth implementation and scalability. With the global AI market exceeding $184 billion in 2024a $50 billion leap from 2023its clear that AI adoption is accelerating. By 2030, the market is projected to surpass $826 billion.
According to Statista , in 2021, the global market for artificial intelligence (AI) in healthcare touched an impressive 11 billion U.S. dollars by 2030, signaling a compound annual growth rate of 37 percent from 2022 onwards. Fueling this monumental rise is the backbone of AI innovations: healthcare datasets.
The AI TRiSM framework offers a structured solution to these challenges. As the global AI market, valued at $196.63 from 2024 to 2030, implementing trustworthy AI is imperative. This blog explores how AI TRiSM ensures responsibleAI adoption. billion in 2023, grows at a projected CAGR of 36.6%
This shift is also leading to new types of work in IT services, such as developing custom models, data engineering for AI needs and implementing responsibleAI. The evolution of AI is promising but also brings many corporate challenges, especially around ethical considerations in how we implement it.
Those pillars are 1) benchmarks—ways of measuring everything from speed to accuracy, to dataquality, to efficiency, 2) best practices—standard processes and means of inter-operating various tools, and most importantly to this discussion, 3) data. In order to do this, we need to get better at measuring dataquality.
Those pillars are 1) benchmarks—ways of measuring everything from speed to accuracy, to dataquality, to efficiency, 2) best practices—standard processes and means of inter-operating various tools, and most importantly to this discussion, 3) data. In order to do this, we need to get better at measuring dataquality.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content