This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This post expands on the NAACL 2019 tutorial on Transfer Learning in NLP. In the span of little more than a year, transfer learning in the form of pretrained language models has become ubiquitous in NLP and has contributed to the state of the art on a wide range of tasks. However, transfer learning is not a recent phenomenon in NLP.
2021) 2021 saw many exciting advances in machine learning (ML) and natural language processing (NLP). If CNNs are pre-trained the same way as transformer models, they achieve competitive performance on many NLP tasks [28]. Popularized by GPT-3 [32] , prompting has emerged as a viable alternative input format for NLP models.
2016 ), Natural Questions (NQ; Kwiatkowski et al., 2016 ), among many others. 2016 ), and BookTest ( Bajgar et al., 2016 ) or narratives written by crowd workers such as MCTest ( Richardson et al., 2016 ), and ROCStories ( Mostafazedh et al., 2016 ), and BookTest ( Bajgar et al., 2019 ), DROP ( Dua et al.,
Across a range of applications from vision 1 2 3 and NLP 4 5 , even simple selective classifiers, relying only on model logits, routinely and often dramatically improve accuracy by abstaining. In Association for ComputationalLinguistics (ACL), pp. This makes selective classification a compelling tool for ML practitioners 6 7.
We organize all of the trending information in your field so you don't have to. Join 15,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content